Hypoxic Training
In-House Testing
Background

- Rented portable hypoxic tent for 6 weeks.

- Intervention designed to see if hypoxic conditions would elicit greater physiological improvements.

- Recent research with athletes shows improved training adaptations in hypoxia:

Baseline Testing & Intervention

Baseline Testing

• Club Incremental Test
• Venous blood sampling

Intervention

• Lactate Threshold training.
• OBLA (4mmol lactate) 95 – 105% HR used.
• 3 x 8 minutes (30’ session)
• Aim 3 x per week for 4 weeks.
• Aim for 12 exposures to hypoxic conditions.
• Heart rate and SpO₂ monitored at end of 8 min blocks.
Baseline Testing & Intervention

Intervention

• Group 1 (Moderate Hypoxic & Heat)

• 2600m
• O_2 15.3%

• AE - Woodway
• BM - Cycle
Baseline Testing & Intervention

Intervention

• Group 2 (Mild Hypoxic & Heat)

• Set to sea level, however, chamber did not maintain sea level O_2

• 200 - 1100m
 • O_2 20.2 – 18.2%

• DS - Woodway
• JB - Cycle
Climate and Physiological Responses
- Differences

• Group 1 Moderate Hypoxia
• Temp. Range 21.7 – 33.2 °C
• Humidity Range 16 – 88 %
• SpO₂ Range 81 – 98%

• Group 2 Mild Hypoxia
• Temp. Range 22.3 – 33.1 °C
• Humidity Range 39 – 83%
• SpO₂ Range 96 – 99%
Practical Issues

- Sea level setting not maintained.
- Due to other commitments it was not possible for all players to complete all sessions (e.g. U21 matches, college, FA qualifications)
- JB not a player! Training different.

No. Of Sessions Completed

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>9</td>
</tr>
<tr>
<td>BM</td>
<td>8</td>
</tr>
<tr>
<td>DS</td>
<td>5</td>
</tr>
<tr>
<td>JB</td>
<td>15</td>
</tr>
</tbody>
</table>
Results

• Subjective Responses

• All participants said they felt good using the chamber and felt fitter.

• BM (Hypoxia & Cycle) in particular reported he felt a significant improvement.

• Potential placebo effect for DS?
Results

4mmol Speed (km/h)

<table>
<thead>
<tr>
<th>Player</th>
<th>Baseline</th>
<th>Re-Test</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>15.1</td>
<td>16.5</td>
<td>9.27%</td>
</tr>
<tr>
<td>BM</td>
<td>12.7</td>
<td>14.8</td>
<td>16.54%</td>
</tr>
<tr>
<td>JB</td>
<td>13.9</td>
<td>15.1</td>
<td>8.63%</td>
</tr>
<tr>
<td>DS</td>
<td>15.8</td>
<td>17.0</td>
<td>7.59%</td>
</tr>
<tr>
<td>Average</td>
<td>14.1</td>
<td>15.9</td>
<td>10.51%</td>
</tr>
</tbody>
</table>

- Mod. Hypoxic: 12.90%
- Mild Hypoxic: 8.11%
Results

Incremental Aerobic 4mmol

HR (bpm)

Speed 28/09
Speed 14/11
HR 14/11
HR 28/09
Discussion

• BM showed greatest improvement of 16.54% (Hypoxia & Cycle)

• Overall moderate hypoxia showed larger improvements. (Statistical significance?)

• Due to sea level setting issue all participants had slight hypoxic stimulus. Reason for all improvements? Lower % change at sea level?

• Larger study group needed and different areas require investigation.
Discussion

• Provides a foundation for potential usage of hypoxia for different training goals.

• Possible intervention for:

• Mid to long-term rehabilitation (evidence for physiological effects after 4+ weeks of training, 8+ sessions)

• Pre-season (based on first inc. test of season)

• Load compromised players requiring extra conditioning.

• Other protocols / training goals (e.g RSA?, strength?, lower aerobic?)
Discussion

• Further research required:

• Responders v reduced responders?

• Ideal no. of exposures

• Time of exposure

• Relationship with injury recovery – reduced O₂ healing effect?

• Level of hypoxia (sea level group required)

• Ideal SpO₂ Range

• Temp. and Humidity Range

• Hematological changes? – potential mechanism for improvement
Hypoxic Training
In-House Testing